
DigiClips
Modernization of the Administrative Website

sddec24-Team03
Jan 16, 2024 - Dec 20, 2024

https://sddec24-03.sd.ece.iastate.edu/
Faculty Advisor: Dr. Ashfaq Khokhar

Team Members/Role:
Derek Brandt - Project Manager / Architecture Lead

Israel Sanchez Tellez - Client Interaction Lead
Derek Brandt - Architecture Lead

Tyler Orman - Security Lead
Aryan Rao - Programming Lead

- ProgrammerDanh Hoang

mailto:dchoang@iastate.edu
https://sddec24-03.sd.ece.iastate.edu/

1

Executive Summary
Project Overview

The Modernization of the Administrative Website aims to resolve the following
identified issues with the previous Administrative portal:

● Outdated libraries.
● Messy and Unorganized User Experience.
● Tech Debt from comments and unimplemented features.

DigiClips mission is to develop a media recording system and sell it as a whole.
Therefore, software quality needs to be high, and the cost of long-term maintenance
should be low.

Summary of Requirements
The Development Requirements produce a higher quality product in the long term and are
as follows:

● Services store and manage data, and UI manages user inputs.
● Features UI will live in a “box,” isolating its functionality.
● Master will never have commented-out code or unimplemented features.

The Functional and Aesthetic Requirements
● Display error messages, error statistics, and uptime statistics.
● Login credentials will be required for website access.
● Modify search engine account status and information.
● All graphs must include clear labels and titles.
● UI is a logical and intuitive structure.

UI Design and Software Architecture
The website uses Angular for its frontend and Express for its backend. Data is

taken from a shared MySQL database that all of DigiClips uses. The user needs are
broken down into features which are implemented as ‘boxes,‘ and boxes are combined
to make dashboards. Dashboards are all the functionality one user group will need.

Outcome
We completed a website that encompasses all previous functionality, makes use

of updated UI and libraries, and has no unused code or comments (tech debt). The
clients, the temporary users, had great success using and viewing the website.

2

Table of Contents
Table of Contents...2

List of Figures and Tables...5

Figures..5

Tables... 5
1. Project Overview..6

1.1. Who is DigiClips..6
1.2. Problem Statement.. 6

1.3. Intended Users.. 6

1.3.1. Software Development Engineers... 7

1.3.2. Managers / Owners.. 7

1.3.3. Customer Support Representative.. 7

1.3.4. Media Recording Engineer.. 8

2. Requirements, Constraints, and Standards..9

2.1. Requirements & Constraints...9

2.1.1. Development Requirements.. 9

2.1.2. Functional Requirements...9

2.1.3. Aesthetic/UI Requirements..9

2.1.4. Constraints... 10

2.2. Engineering Standards...10

2.2.1. Coding Standards...10

2.2.2. Discussed Standards with the Client... 10

2.2.3. Adopted Industry Standards... 11
3. Project Plan..12

3.1. Project Mangement Style..12
3.2. Progress Tracking...12
3.3. Task Decomposition and the Work Breakdown Structure...12

3.3.1. Project Initiation and Analysis..13
3.3.2. Redesign and Prototyping..13
3.3.3. Implementation.. 14
3.3.4. Project Completion and Deliverables...15

3.4. Milestones and Metrics... 15
3.4.1. Project Initiation and Analysis..15
3.4.2. Redesign and Prototyping..15
3.4.3. Implementation.. 15
3.4.4. Project Completion and Deliverables...16

3.5. Risk and Mitigation... 16
3.5.1. Identified Risks and Mitigation Strategies..16
3.5.2. Risks Encountered...17

3

3.6. Personnel Effort.. 17
3.7. Resource Requirements... 18

3.7.1. Client-owned GitHub Repository..18
3.7.2. Computer Environment..18
3.7.3. Package Manager..18

4. Project Design..19
4.1. Broader Content... 19
4.2. Ideation and Design Decisions... 19

4.2.1. The administrative website will be a web application with user-specific dashboard
layouts..19
4.2.2. All features will be isolated into a ‘box’ or a ‘card.’ Dashboards will be a suite of
boxes... 20
4.2.3. HTML Requests will only be made from an Angular Service.................................20
4.2.4. All SQL requests will be made through Stored Procedures...................................20
4.2.5. Github Master Branch contains only working features and no unused code.........20

4.3. Previous Designs..21
4.4. System Architecture..22
4.5. UI Designs and Box Definition.. 23
4.6. Functionality..24

4.6.1. Developer Functionality... 24
4.6.2. Functionality for Future Deployment..24

4.7. Technology Considerations...25
4.7.1. Coding Technologies..25
4.7.2. Database..25

4.8. Areas of Challenge... 25
5. Testing.. 26

5.1. Unit and Interface Testing... 26
5.1.1. Express Testing Via Jest..26
5.1.2. Angular Testing.. 26
5.1.3. Interface Testing - Dashboards and Suites..26

5.2. Integration Testing.. 26
5.3. System and Regression Testing... 27
5.4. Acceptance and User Testing... 27
5.5. Results..27

6. Implementation.. 28
7. Professional Responsibility..29

7.1. Areas of Responsibility... 29
7.2. Project-Specific Professional Responsibility Areas.. 31
7.3. Most Applicable Professional Responsibility Area..32

8. Conclusion... 33
8.1. Summary of Progress... 33

4

8.2. Value Provided..33
8.3. Next Steps.. 33
8.3.1. Team Handoff...34
8.3.2. Recommended Features... 34

9. References.. 35
Appendix A - Operational Manual.. 36
Appendix B - Code...38
Appendix C - Gantt Chart..39
Appendix D - Team.. 40

5

List of Figures and Tables

FIGURES
● Figure 1. Complete Digiclips System Architecture
● Figure 2. Previous Administrative Website System Architecture
● Figure 3. Modernized Administrative Website Architecture
● Figure 4. Machine Status Box
● Figure 5. Backend Analyst Dashboard in Dark Mode
● Figure 6. Dashboard Preset Dropdown

TABLES
● Table 1. Team Contribution Breakdown
● Table 2. Decision Matrix for Project Format
● Table 3. Area of Responsibility Chart

6

1. Project Overview
1.1. WHO IS DIGICLIPS

DigiClips is a company set on creating a digital media system that can record data
from outlets such as T.V. stations, radio channels, and more. The goal is to eventually
develop a complete system that can be sold to a larger company.

1.2. PROBLEM STATEMENT

DigiClips relies on two critical subsystems: a customer-facing search engine and a
data recording/processing server. Efficient access to key data—such as error logs, uptime
metrics, server statuses, and machine configurations—is essential for maintaining
operational reliability and addressing issues promptly. While an administrative system exists
to facilitate access to this data, it has become outdated, inefficient, and overly complex.
These flaws have introduced significant challenges for developers, increased maintenance
costs, and reduced the product's overall value.

To address these challenges, our team will comprehensively modernize the
administrative system. This effort will involve:

1. Library and Framework Updates: Transitioning to updated libraries and versioning
practices.

2. System Optimization: Reducing complexity by removing redundant code and
implementing clear object ownership.

3. User Experience Enhancements: Redesigning the interface to a modern,
streamlined aesthetic while consolidating all core features into intuitive dashboards
tailored to user roles.

4. Future-Proofing: Establishing clear development guidelines to simplify ongoing
maintenance and ensure scalability.

We aim to enhance system efficiency, improve maintainability, and deliver a more
robust and user-friendly administrative solution by implementing these measures.

1.3. INTENDED USERS

There are four primary users we will target. The Administrator Website is an internal
website that employees will access. Therefore, we will prioritize development toward
Managers / Owners, Customer Support Representatives, and Backend Recording
Engineers. These will be targeted through feature conversion/development and specialized
dashboards (More on this in section 4. Project Design). Our project also involves a lot of

7

maintenance, so the final users we will target are the Software Developers working on the
project.

1.3.1. Software Development Engineers
Profile:

● Age: 20–40 years old
● Expertise: Advanced knowledge in software development, coding, databases, and

frameworks.

Needs:
● Documentation for compiling and executing the administrative website.
● Guidelines for future development practices.
● Code documentation outlining design patterns to follow.
● A roadmap of pending features and next steps.

Benefits:
Software development engineers do not directly use the website but develop it.

Their primary benefit lies in adhering to well-documented practices that ensure the
codebase is readable, maintainable, and easy to compile, ultimately reducing development
time.

1.3.2. Managers / Owners
Profile:

● Age: 30–50 years old
● Expertise: Primarily business-focused with limited software engineering knowledge.

Needs:
● System monitoring for server and computer statuses.
● Access to user traffic statistics and machine uptime metrics.
● Tools to manage and control user permissions.

Benefits:
The administrative website provides managers with actionable insights into system

performance and user interactions, enabling resource allocation and operational efficiency.
Additionally, it helps prevent information misuse through robust user permission controls.

1.3.3. Customer Support Representative
Profile:

● Age: 30–50 years old
● Expertise: Minimal software experience, focused on client interaction.

8

Needs:
● Access to server statuses for accurate client updates.
● Tools to review customer account information.
● Logs of system errors and downtimes.

Benefits:
The administrative website streamlines access to customer and system information,

significantly improving support efficiency compared to the previous cumbersome database
access system. It enables immediate access to client account information, which is vital in
customer support.

1.3.4. Media Recording Engineer
Profile:

● Age: 30–50 years old
● Expertise: Advanced knowledge of software systems, specializing in video, audio,

and image processing backend systems.

Needs:
● Alerts and status updates on computers and subsystems in error states.
● Detailed error diagnostics for troubleshooting.
● Remote configuration management for system optimization.

Benefits:
The administrative website minimizes the effort required to identify and resolve

system errors by consolidating error data and providing centralized access, reducing the
overhead of manual database queries and system checks.

9

2. Requirements, Constraints, and Standards

2.1. REQUIREMENTS & CONSTRAINTS

The project requirements are organized into four categories: Development
Requirements, Functional Requirements, Aesthetic/UI Requirements, and Constraints.
Each category addresses specific aspects of the administrator website based on client
specifications, standard practices, and project limitations.

2.1.1. Development Requirements
The development requirements are the responsibilities developers have to keep the

project maintainable:

● Any HTTP Rest requests in the Angular project should be contained in an Angular
Service.

● All future features will be developed as a ‘box’ unless a documented reason is given
for larger features.

● Master will never have commented out code.
● Modules should either be tested or have a test plan prepped.

2.1.2. Functional Requirements
The functional requirements define the core capabilities of the administrator

website:

● The website must display all error messages generated by backend machines.
● The website must display uptime statistics for backend machines.
● The website must allow modification of configuration files controlling backend

machines.
● User login credentials will be required for website access.
● The website must provide functionality to modify user login information from the

search engine.
● Super-administrators must have the ability to manage administrator accounts.

2.1.3. Aesthetic/UI Requirements
Aesthetic and UI requirements focus on ensuring the website is user-friendly,

visually appealing, and aligned with standard UI design principles:

● All graphs must include clear labels and titles.
● User interface pages must follow a logical and intuitive structure.
● The website’s visual design must be appealing and cohesive.

10

2.1.4. Constraints
Constraints define the technical and environmental limits within which the website

must operate:

● 100% of current working features are converted into ‘boxes.’
● Must be able to handle ~2000 error messages at one time.

2.2. ENGINEERING STANDARDS

In order to ensure high-quality development and adherence to industry best
practices, the project incorporates the following engineering standards, organized by their
purpose and relevance to the administrative website.

2.2.1. Coding Standards

● Angular Coding Style Guidelines
○ Ensures uniformity in Angular code, improving readability and maintainability

across the team.
● Google TypeScript Style Guidelines

○ Standardizes TypeScript code, enhancing collaboration and future
development by ensuring consistency.

2.2.2. Discussed Standards with the Client
● HTTP/HTTPS Protocols

○ Purpose: Secure and reliable communication between the frontend and
backend.

○ Application: All data transmission between the Angular frontend and
backend server will use these protocols.

● Security Standards
○ Input sanitization and SQL stored procedures are used to protect database

interactions.
○ Adherence to best practices prevents vulnerabilities and secures sensitive

information.
● Performance Optimization

○ Techniques such as lazy loading, bundle size minimization, and optimized
rendering improve user experience and system efficiency.

● Testing Standards
○ Implementation of unit and end-to-end tests for Angular applications ensures

robustness and reliability.

11

2.2.3. Adopted Industry Standards

Standard Purpose Relevance

ISO/IEC
25010:2011

Framework for assessing software
quality (e.g., functionality,
reliability, maintainability).

Ensures the website is reliable,
maintainable, and functionally
suitable for DigiClips’ needs.

ISO/IEC
27001:2013

Information security management
standard.

Protects sensitive data through
strong security policies and access
controls.

IEEE 829-2008 Guidelines for software testing
documentation.

Establishes structured testing
plans, benefiting error monitoring
and system reliability.

ISO/IEC
20000-1:2018

Service management system
standard.

Provides structured service
management for continuous
system operation and incident
response.

IEEE
14764-2006

Guidance on software
maintenance processes.

Ensures a structured approach to
updates, error corrections, and
system enhancements.

ISO
9241-210:2010

Human-centered design standard
for usability and accessibility.

Improves user experience by
creating an intuitive interface for all
user groups.

12

3. Project Plan
3.1. PROJECT MANGEMENT STYLE

Following industry practices, the project was broken into tasks using a work
breakdown structure. Each work package then becomes a task that will get assigned to a
member of the team. These tasks are completed through Agile planning. The sprints will
last two weeks. We will operate under the idea that those two weeks will have the
following:

● 8 hours of work for semester 1.
● 15 hours of work for semester 2.

The difference between semester one and semester two is the amount of classwork
expected to be done outside of class. The designing and prep work is expected to take
less time than implementation.

We will aim for three points per sprint. Agile was chosen for its adaptability. As will
be briefed later, our main areas of risk lie in programming. Being adaptive to bugs and any
other issues will be vital to the success of the project.

3.2. PROGRESS TRACKING
In order to track any work being done, the following sources should be updated

bi-weekly:
● Gantt Chart Progress Tracker tasks are updated with the estimated percentage

complete or EPC.
● Clients Github will be updated will commits and merge requests to track code

progression. Important: GitHub progress is tracked by the client, so it is vitial that
code updates be present. Ideally, more often than bi-weekly, but this is optional.

3.3. TASK DECOMPOSITION AND THE WORK BREAKDOWN STRUCTURE

To represent the decomposed tasks, our team has elected to use a work
breakdown structure. A full WBS combined Gantt chart is provided in Appendix C. We
have provided a compressed WBS and Gantt chart for subgroups for convenience.

In order to read the WBS and Gantt chart, it is important to know some
terminology. The duration represents the estimated story points, which are updated on a
bi-weekly basis during sprint reviews. EPC of Task Completed represents the estimated
percentage complete; however, all tasks that have an EPC of 100% have been
completed.

13

3.3.1. Project Initiation and Analysis
Initiation and Research

WBS
NUMBER TASK TITLE

TASK
OWNER DURATION

EPC OF TASK
COMPLETE

February March

1 2 3 4 1 2 3 4

1 Project Initiation

1.1
Contact Clients and Grab Project
Information Team 4 100%

1.2 Develop Problem Statement Derek B 2 100%

1.2.1 Confirm Problem Statement with Clients Israel S 2 100%

1.3 Identify User Groups and Needs Aryan R 2 100%

1.4 Gather Requirements Derek B 1 100%

1.5 Gather industry examples and solutions Tyler O 2 100%

2 Previous Project Analysis

2.1 Identify Technologies Used Tyler O 2 100%

2.2 Map Current Architecture Derek B 2 100%

2.3 Identify Current Features Israel;Aryan 4 100%

3.3.2. Redesign and Prototyping

WBS
NUMBER TASK TITLE

TASK
OWNER DURATION

EPC OF TASK
COMPLETE

April

1 2 3 4

3 Redesign and Prototyping

3.1 Redesign Feature into Boxes

3.1.1 Machine Status Feature Derek B 2 100%

3.1.2 Error Table Feature Tyler O 2 100%

3.1.3 Verify Account Feature Israel S 1 100%

3.1.4 Block Account Feature Tyler O 1 100%

3.1.5 Error Graphs Feature Israel S 2 100%

3.1.6 Upload Config Feature Aryan R 2 100%

3.2 Compile designs for Dashboards

3.2.1 Backend Analysis Dashboard Tyler O 2 100%

3.2.2 Customer Support Dashboard Israel S 2 100%

3.3 Prototype Design Structure in Angular Aryan R 4 100%

3.4 Redesign Code Architecture Derek B 4 100%

14

3.3.3. Implementation
Implementation and Development

WBS
NUMBER TASK TITLE

TASK
OWNER

DURATIO
N

EPC OF TASK
COMPLETE

Aug. September October

3 4 1 2 3 4 1 2 3 4

4 Implementation

4.1 Refamiliarate with the code base Team 3 100%

4.1.1 Identify Potential Tech Debt Team 3 90%

4.2 Delete commented and unused files Tyler O 2 100%

4.3 Update Dependencies

4.3.1 Migrate from Angular 16 to Angular 18 Derek B 2 100%

4.3.2 Migrate from Express 4 to Express 5 Derek B 1 100%

4.4 Feature Conversation

4.4.1 Convert Machine Status Feature Derek B 2 100%

4.4.1.1 Add Machine Status Service Derek B 2 100%

4.4.2 Convert Error Table Feature Tyler O 3 100%

4.4.3 Convert Verify User Feature Danh H 2 100%

4.4.4 Convert Block User Feature Danh H 2 100%

4.4.5 Convert Error Graph Feature

4.4.5.1 Create Base Graph Interface Israel S 1 100%

4.4.5.2 Convert FFMPEG Error Tables Israel S 2 100%

4.4.5.3 Convert Failed To Record Tables Aryan R 2 100%

4.4.5.4 Improve Login Page UI Tyler O 3 100%

4.4.5.5 Convert Config Upload Feature Aryan R 3 100%

4.4.5.5 Create Error Service Derek B 3 100%

4.4.6
Combine for Backend Analyst
dashboard Danh H 2 100%

4.4.7
Combine for Customer Support
dashboard Israel S 2 100%

4.5 Reversed for Bug Fixes Team ??? 100%

15

3.3.4. Project Completion and Deliverables
Doc. Project Wrap Up

WBS
NUMBER TASK TITLE

TASK
OWNER DURATION

EPC OF TASK
COMPLETE

May November Dec.

1 2 1 2 3 4 1 2

5 Project Completion and Deliverables

5.1 Complete Sem.1 Review Presentation Team 8 100%

5.2 Review Sem.1 Project Doc. Team 8 100%

5.5 Review Sem.1 Progress with Clients Team 4 100%

5.3 Complete Comprehensive Test Plans

5.3.1 Write Feature Test Coverage Plan Team 8 70%

5.3.2 Upload and communicate Test plan Derek 1 100%

5.4 Handoff Meeting with Oregon Team Derek 1 100%

5.6 Review Final Project Doc. Team 8 100%

5.7 Complete Final Review Presentation Team 8 100%

5.8 Finalize Final Review Poster Team 4 100%

5.9 Final Project Review with Clients Team 4 100%

3.4. MILESTONES AND METRICS

For each subgroup, we also have identified milestones and metrics that we will use
to track our progress.
3.4.1. Project Initiation and Analysis

● Gather and confirm 100% of client requirements and project scope.
● Complete a detailed problem statement and confirm it with clients.
● Identify 100% of user groups, their needs, and requirements.
● Map and analyze 90% of the current project architecture and features.

3.4.2. Redesign and Prototyping
● Redesign 100% of features identified, grouped into dashboard-specific

components.
● Develop a functional structure prototype using Angular.
● Finalize redesigned code architecture for implementation readiness.

3.4.3. Implementation
● Clean the codebase by resolving 100% of identified tech debt, unused files, and

outdated dependencies.
○ Zero commented code in master.
○ All functions are referenced at least once.

16

● Complete feature conversion and integration for all modules:
○ Machine Status
○ Error Table
○ Account Verification/Blocking
○ Error Graphs
○ Config Upload

● Integrate all converted features into the Backend Analyst and Customer Support
dashboards.

3.4.4. Project Completion and Deliverables
● Develop a comprehensive use-case-based test plan for all features.
● Deliver the software to the client for integration testing on their machine.
● Finalize all project documentation.

3.5. RISK AND MITIGATION

3.5.1. Identified Risks and Mitigation Strategies
Mitigation techniques have been provided for all risks with either a probability of

greater than 50% or a severity of High. The following is a list of identified risks.

● Missing critical client needs or misinterpreting requirements.
○ Risk Probability: 20%
○ Severity: High
○ Mitigation Technique: Weekly meetings with clients will allow for progressive

collaboration, ensuring needs and requirements are clear and agreed upon.
● Redesigns might not represent full functionality, leading to rework and tech debt for

future teams.
○ Risk Probability: 30%
○ Severity: Medium

● Upgrading Angular and Express might introduce bugs or compatibility issues.
○ Risk Probability: 60%
○ Severity: Medium
○ Mitigation Technique: Time will be allocated at the end of the semester for

any bugs discovered.
● Some features might take longer to convert than expected.

○ Risk Probability: 50%
○ Severity: High
○ Mitigation Technique: Time allocated for a feature conversion will also include

time to learn. This ensures that teammates can get a clear understanding
with technologies and code they are unfamiliar with.

17

● The client is unable to integrate redesigned features.
○ Risk Probability: 40%
○ Severity: Medium

3.5.2. Risks Encountered
The team ran into a few of the identified risks. Primarily, we ran into risk Some

features might take longer to convert than expected. However, the team was equipped
to handle it as our schedule allowed us to buffer time. The remaining risks didn’t come to
bear as the team successfully converted all features, and weekly communication with the
client kept all aligned in the designs.

In addition, the team also had to handle a missed risk. Failure to identify and
estimate total previous tech debt. Adapting to the missed risk, the team created separate
stories during the sprints to tackle the tech debt specifically. Cleaning up the debt after
migrating the feature meant the requirements would be before any additional work was
done.

3.6. PERSONNEL EFFORT
Expected hours can be calculated by taking eight weeks times sprint length. To

keep expectations within reason, we allowed for a week’s worth of work as leeway for
fluctuations in outside time commitments. A primary exception to this is Danh Hoang as
he joined about halfway through the second semester.

In addition, the beginning of our first semester caused us to fall behind. We were
unable to get access and set up a meeting due to technical issues and scheduling.
However, we were able to push our plan back, as is reflected in 3.3. Task Decomposition
and the Work Breakdown Structure.

Teammate Expect Hours
(Semester 1)

Actual Hours Expect Hours
(Semester 2)

Actual Hours

Derek Brandt 64 43 105 120

Danh Hoang 0 0 55 54

Tyler Orman 64 44 105 107

Aryan Rao 64 43 105 99

Israel Sanchez 64 42 105 100

Table 1. Team Contribution Breakdown

18

3.7. RESOURCE REQUIREMENTS

3.7.1. Client-owned GitHub Repository
The client has provided a private Github that they request all teams use to keep

track of their work so visibility is clear to both other teams and themselves. As such, our
team will use this Github for our own personal code reviews and tracking.

3.7.2. Computer Environment
Each team member is expected to have a computer environment that allows them

to build and run Angular and Express applications. This is required for both development
and integration testing.

3.7.3. Package Manager
A common practice when developing TypeScript and JavaScript applications is to

use a package manager to download remote dependencies. As the project will require
third party libraries, a package manager is required to build the project. A recommended
package manager is Node Package Manager or NPM.

19

4. Project Design
4.1. BROADER CONTENT

This project aims to resolve issues with the current administrative website that
DigiClips has been developing. Since DigiClips aims to sell the entire system as a whole,
the project aims to reduce the risk involved in taking on the administrative website as a
product. Thus, the team hopes to improve the economic impact the project will pose.

4.2. IDEATION AND DESIGN DECISIONS

The following design decisions have been taken from the previous design and
market research. After client meetings, the team believes that these design decisions are in
alignment and aim toward a better product for the client.

4.2.1. The administrative website will be a web application with user-specific dashboard
layouts.
Based on market research, the team has decided to continue the development of

the current administrative website; however, instead of using multiple pages, dashboards
will be created with multiple features per page. Other solutions would considered, I.e.,
industry solutions like Tableau and Excel and different variations of custom websites.

The following decision matrix weighs each solution considered in the following
categories on a scale of [0,5]: Maintainability, Usability, Information Density (Info. Den.),
and Cost. The one exception is that information density is measured inversely. Ideas with a
ton of information in one place would make it hard to read.

Idea Maintainability Usability Info. Den. Cost Total

Dashboard
Website

2 4 5 5 16

Display All
Website

3 5 1 5 14

Multi Website 1 1 5 4 11

Excel 3 3 2 3 11

Tableau 4 4 3 2 13

Table 2. Decision Matrix for Project Format.

While the dashboard website had low maintainability due to potential tech debit
introduced by student developers and the nature of building a custom solution, it was

20

highly ranked in the other categories. A custom website allows targeted information and
targeted features. A dashboard website was more efficient at displaying information and
features for each user group mentioned in section 1.3 Intended Users.

4.2.2. All features will be isolated into a ‘box’ or a ‘card.’ Dashboards will be a suite of
boxes.
In order to create a development environment that allows for cross-team

collaboration, there must be an agreed-upon development workflow. Isolating features
into boxes that will live in dashboards will create a low likelihood of inter-team conflicts. In
addition, it will encourage visual resemblance between all current and new features. (See
section 4.4. UI Designs and Box Definition for more information on boxes.)

4.2.3. HTML Requests will only be made from an Angular Service.
Quoting from Angular’s documentation, “Angular services provide a way for you to

separate Angular app data and functions that can be used by multiple components in your
app.” Based on the team’s analysis, this practice shall be followed as multiple features will
share data. Also, this practice allows for “timed refreshes,” a feature directly requested by
the client.

4.2.4. All SQL requests will be made through Stored Procedures.
This is a direct request from the client. The team also performed an analysis of this

decision and decided to adhere to it for two main reasons. First, previous implementations
make use of stored procedures allowing us to reuse more code. Second, using stored
procedures ensures that no SQL injections can be made to get data from unauthorized
tables.

4.2.5. Github Master Branch contains only working features and no unused code.
Previously, unused (or commented) code was left in as teams ended their semester

partially through feature development. This has led to confusion on which features have
been implemented and which might be outdated. Thus, it has been decided that no
unused code will be in the master branch, and it will only contain those features that
function. Master sanitization is a common industry practice.

21

4.3. PREVIOUS DESIGNS

Digiclips has been working on this project for multiple years. The team analyzed the
previous design. These designs are illustrated in Figure 1 and Figure 2.

Figure 1. Complete Digiclips System Architecture

Figure 2. Previous Administrative Website System Architecture

This project targets moderizing the previous administrative website which is one of
the three subsystems of DigiClips. The previous administrative website was a website built
by multiple teams from multiple universities. As such, coding practices and features have
changed or become stale. This is shown in the ‘Not-Accessible Code and Features’. The
design also contains redundant features and no clear rules or overall UI design.

22

4.4. SYSTEM ARCHITECTURE

The architecture resigns will only target the architecture of the administrative
website. The Express.js Backend server will be responsible for the following:

● Inter-subsystem communication. I.e., SQL Queries and IP Pings.
● Handling REST Requests made from user frontends.
● Authentication requests.

The other subsystem, the Angular.js Frontend client handler, will be responsible for
the following:

● Display graphical and tabular data.
● Uploading Configuration files.
● Handling user interaction.
● Managing User Accounts.

Figure 3. Modernized Administrative Website Architecture

Figure 3 depicts the visual representation of the architecture. The communication
between the backend and frontend will be done through REST requests, and the SQL
requests will be made through store procedures. The frontend is comprised of two primary
parts: Services and Dashboards. Services handle storing data locally (data requested from
the backend), and dashboards are the UI that display the data. For an example of a
service, see Appendix B. Dashboards will then be comprised of boxes. Details regarding
these will be included in the next section.

23

4.5. UI DESIGNS AND BOX DEFINITION

As mentioned in the previous section, the frontend is comprised of dashboards,
which are comprised of boxes. Boxes isolate some single functionality, i.e., a graph box to
display some error statistic or a site status (which is pictured in Figure 4).

Figure 4. Machine Status Box.

The boxes are then grouped by functionality or user groups (listed in section 1.3
Intended Users) Figure 5 depicts an example of this dashboard. In this example, the
backend analyst dashboard is depicted, which is comprised of the machine status, error
table, upload config, and a couple of graphs. Each of these represents a single feature or
statistic important to a backend analyst.

Figure 5. Backend Analyst Dashboard in Dark Mode.

24

4.6. FUNCTIONALITY
4.6.1. Developer Functionality

A developer can access the website differently than an end user. A developer will
need to locally download the code base and use a package manager to download the
website dependencies and build the project. A full detailed walkthrough is given in
Appendix A. Operational Manual. There are two ways to run the project:

● Backend Data Mocking mocks data from the SQL database so the Express
Backend can simulate its functionality.

● Integration requires a VPN to connect to allow the Express Backend to
connect to the SQL database.

Before starting the website, the user needs to create a mock account. A script has
been provided to do this, and an in-depth description is provided in Append A. Operational
Manual and the ReadMe provided on Github.

Once the website is running locally, use should be simple. The user can select a
dashboard through the dropdown menu shown in Figure 6. Once a dashboard is selected,
the user is allowed to freely interact with each box on the dashboard.

Figure 6 Dashboard Preset Dropdown.

4.6.2. Functionality for Future Deployment
This is an employee-only website. As such, all accounts should be managed by a

manager and not provided through a ‘Sign-Up.’ These accounts will be stored in an SQL
database.

The website will also run with a public IP address. This means that users can
access the website without simulating it themselves and without remoting into a VPN. Due
to the nature of this project, the public IP will be the responsibility of whoever buys the
software.

25

4.7. TECHNOLOGY CONSIDERATIONS

4.7.1. Coding Technologies
The following technologies have been used in some form throughout the project.

● Angular - The client chose Angular, but after further research for its
component-based architecture, two-way data binding, and scalability, it is ideal for
building dynamic, single-page applications with reusable components.

● Express - Selected for its lightweight, flexible design, enabling quick setup of
RESTful APIs, middleware integration, and efficient handling of HTTP requests.

● Jasmine/Karma - Angular’s built-in testing functionality depends on Jasmine and
Karma. They provide human-readable tests and cross-platform (Chrome, Firefox)
test runners.

● Jest - Preferred for its comprehensive testing capabilities, including mocking, and
snapshot testing, ensuring reliable and maintainable JavaScript applications.

4.7.2. Database
MySQL was the chosen database for two reasons: the client had one established

so cross-group teams could share data, and converting this database had no upside.
MySQL is still a great industry solution, easy to connect to without duplicating data (VPN in
this case), and provides efficient results.

4.8. AREAS OF CHALLENGE

The primary challenge that was faced was underestimating tech debt that occurs
over time (I.e., bad code, comments, old dependencies) and the team's experience in web
development. Only one team member was versed in Angular. Inexperience left a lot of
development time researching Angular, bug fixes, and TypeScript.

However, due to proper planning and estimating of story time, the requirements
were still met (I.e., all working features were converted and the master branch cleaned).
Most of the user needs were met; however, roadblocks in interdependent team
collaboration led to features being partially completed.

26

5. Testing
5.1. UNIT AND INTERFACE TESTING
5.1.1. Express Testing Via Jest

Express Backend testing was done with Jest, a testing framework. A unit is
defined as a single route, i.e., https://[website ip]/myRoute. Each route will have a set of
unit tests corresponding to it. An example of this can be seen in Appendix B. Since the
Express server connects to the database and the OS, these must be mocked during
testing.

5.1.2. Angular Testing
Angular recommends using Karma and Jasmine to run tests. Jasmine allows writing

tests in a human-readable way while Karma runs the tests, mocking different browsers. A
unit is defined as a singular service or box. An example of a box unit test is provided in
Appendix B.

5.1.3. Interface Testing - Dashboards and Suites
Interface testing was done by combining unit tests into suites. One box will have

multiple tests and combine to make it’s test suite. When these get combined to make a
dashboard, unit tests are written to verify that the dashboard contains all required boxes;
however, testing the functionality of those boxes is left to their respective unit tests.

End-to-end tests are required to test the backend and frontend together. The team
was unable to get Cypress functioning (Cypress is a testing framework commonly used for
end-to-end testing.) We ran manual tests following user scenarios on mocked database
data to compensate.

5.2. INTEGRATION TESTING
Integration tests are very similar to interface testing with one key difference: data is

not mocked from the database. Database integration has to be tested separately in case
data from the database does not match the mocked data in the end-to-end testing. Just
like interface testing, integration testing is done manually, following the same user
scenarios done as interface testing.

27

5.3. SYSTEM AND REGRESSION TESTING
To verify the system behaves as expected, the combination of unit tests and

(manual, but preferred automated) end-to-end testing. Unit tests are written based on
common user scenarios for each box, and manual end-to-end (interface and integration)
testing ensures that the system functions according to the requirements.

All unit tests are run (Frontend and Backend) before merging into the master
branch. Manual testing is also done and reported during meetings, finalizing the merge
requests. These tests ensure that the systems perform as expected and no feature’s
functionality has regressed.

5.4. ACCEPTANCE AND USER TESTING
Conveniently, acceptance and user testing were done through the same process.

The client, who is also a user, accepts our designs and implementations after demo
videos during the weekly meetings. After accepting the new changes, the client would
simulate and provide feedback on the functionality.

Overall, the client was satisfied with the functional and aesthetic requirements;
however, they were concerned with the packages being outdated. This is to be expected
as packages need to be constantly updated and can go out of date at any time.

5.5. RESULTS

The team excelled in Integration, Acceptance, and User testing. The client gave
full approval of the functionality and designs during each demo and the final product
review. This means we met our Acceptance and User testing. Integration was our primary
method of testing as it ensured real data would function properly. During the final product
review, a full demo was given, highlighting integrated functionality.

Unit and Interface testing is where the team fell short, and a lack of experience was
evident. While the team was successfully able to write unit tests covering 90% of newly
developed code, old code was often missed as no previous testing had been done.
However, this has been communicated to the next team and recommended testing steps
are supplied.

28

6. Implementation
The team focused on refactoring some existing components by decoupling the

dependencies of each UI component. We did this to make them into modular
components. By injecting modularity into the code, the team was able to implement our
design that allows the display of relevant components based on the user’s role. Below is a
breakdown of the components the team refactored:

● Machine Status - Display the status of different machines; Show real-time updates
of performance and health.

● Error Table - Tracks and displays errors from the machines. It now provides clear
and organized information for quick troubleshooting.

● Verify Account Page - Modernized layout for easier account details look-ups.
● Graphs - Decoupled graphs into individual components for reusability.

With the components now modular, the team shifted focus to modernizing the user
interface. Following the design approved by the client, we implemented several changes to
enhance the UI. The result is a sleek and visually appealing design. Below are the key
changes implemented to the user interface.

● Box Base Class - Each of the components above inherits from this class.
Therefore, they all follow the same design and can be easily modified if the client
needs to make any future modifications.

● Dark Mode and Help Component - Dark mode is a standard component in
modern app design for user preference and accessibility. The help component
offers user support and troubleshooting resources.

Part of our design included changes that will improve code maintainability and
faster development for future engineers. Below are some of the changes we did:

● Cleaned Code Base - As each component was being created, any unused or
redundant code was removed.

● Upgraded to Angular 18 - The application can now be developed using the latest
Angular framework with Long Term Support.

● Removed Package Vulnerabilities - Updated packages and resolved
dependencies conflicts. The application now builds without any vulnerabilities.

29

7. Professional Responsibility
This discussion is with respect to the paper titled “Contextualizing Professionalism

in Capstone Projects Using the IDEALS Professional Responsibility Assessment”,
International Journal of Engineering Education Vol. 28, No. 2, pp. 416–424, 2012

7.1. AREAS OF RESPONSIBILITY

Area of
Responsibility

Definition NSPE Canon IEEE Code of
Ethics

NSPE vs. IEEE
Differences

Work
Competence

Perform work of
high quality,
integrity,
timeliness,
and professional
competence.

Perform services
only in areas of
their
competence;
Avoid deceptive
acts.

(6) To undertake
technological
tasks for others
only if qualified
by training or
experience, or
after full
disclosure of
pertinent
limitations

(3) To be honest
and realistic.

While the NSPE
focuses primarily
on only doing
work within ones
area of
competence, the
IEEE code allows
for work outside
of their
competence as
long as there are
proper
disclosures.

Financial
Responsibility

Deliver products
and services of
realizable value
and
at reasonable
costs.

Act for each
employer or
client as faithful
agents or
trustees.

(7) To seek,
accept, and offer
honest criticism
of technical
work, to
acknowledge
and correct
errors, and to
credit properly
the contributions
of others;

The IEEE code
does not
specifically cover
the how one
should act for
clients, although
it does mention
to correct errors
and accept
criticism.

Table 3. Area of Responsibility Chart

30

Communication
Honesty

Report work
truthfully, without
deception, and
understandable
to stakeholders.

Issue public
statements only
in an objective
and
truthful manner;
Avoid deceptive
acts.

(3) To be honest
and realistic in
stating claims or
estimates based
on available
data.

The two codes
are similar on this
value. They both
state to be
honest and
realistic without
deceit.

Health, Safety,
Well-Being

Minimize risks to
safety, health,
and well-being of
stakeholders.

Hold paramount
the safety,
health, and
welfare of the
public.

(1) To accept
responsibility in
making decisions
consistent with
the safety,
health, and
welfare of the
public.

(9) To avoid
injuring others,
their property,
reputation, or
employment by
false or malicious
action.

While the codes
are similar on this
value, the NSPE
holds safety
paramount while
the IEEE code is
more focused on
accepting the
responsibility to
make a safe
product and
avoid injuring
others.

Property
Ownership

Respect
property, ideas,
and information
of clients
and others.

Act for each
employer or
client as faithful
agents or
trustees.

(7) To seek,
accept, and offer
honest criticism
of technical
work, to
acknowledge
and correct
errors.

While the IEEE
code does not
specifically
mention how to
act for clients, it
does focus on
accepting
criticism and
correcting errors.

Table 3 Continued

31

Sustainability Protect
environment and
natural resources
locally
and globally.

Adhere to
sustainable
principles to
protect the
environment.

(1) To disclose
promptly factors
that might
endanger
the public or the
environment.

The NSPE code
focuses on
adhering to
sustainable
practices while
the IEEE code
focuses on
reporting
environmental
dangers.

Social
Responsibility

Produce
products and
services that
benefit society
and
communities.

Conduct
themselves
honorably,
responsibly,
ethically, and
lawfully so as to
enhance the
honor,
reputation, and
usefulness of the
profession.

(5) To improve
the
understanding of
technology; its
appropriate
application, and
potential
consequences.

While both codes
talk about
furthering the
profession, the
NSPE code
focuses more on
the personal
conduct as
opposed to
improving
understanding
with the IEEE
code.

Table 3 Continued

7.2. PROJECT-SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Work Competence - High: Work Competence plays a large role in our project as the
team is developing a piece of software that will be in use within DigiClips. We are
performing highly in this area because we are producing our project within our deadlines
and to the highest quality with the knowledge gained from our coursework.

Financial Responsibility - High: The area of Financial Responsibility applies partially to
the project, while the team is striving to create a high-quality product with a realizable
value, the costs of the project are not applicable as we are using non-commercial software
and internal tools. Our team has been able to design a high-quality product with zero
financial cost to the client.

32

Communication Honesty - High: Communication Honesty is a high priority for our team.
Working closely with the clients ensures that we are creating a product that will suit their
needs and be useful to their company. Our team conducts weekly meetings with our
clients in order to review designs and give general status updates on the project.

Health, Safety, Well-Being - NA: As our team’s project is entirely software-based,
Health, Safety, and Well-Being are not overly relevant. There are no significant Health,
Safety, or Well-Being risks or concerns with our project.

Property Ownership - Medium: Property Ownership is relevant to our project and plays
an important role in our team storing information regarding the clients of our application.
Our team is working to ensure that our designs will properly handle any client information
contained within the application.

Sustainability - NA: Due to our project being entirely software-based, the Sustainability
value is not relevant to our project. Our project does not have a positive or negative impact
on the environment or natural resources.

Social Responsibility - NA: Similarly, since our project is to be used as an internal tool,
the Social Responsibility value is also not relevant to our project. Our project does not have
a positive or negative impact on society or communities.

7.3. MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Communication Honesty is the most applicable area to our project. Our team is
focused on maintaining consistent communication with the clients to ensure a project is
developed that suits their specifications. In addition to client communications, our team
aims to develop and maintain proper code documentation throughout the implementation
phase of the project. This will ensure that future developers are able to understand the
code and work with it. Finally, easy to understand instructions will be created in order to
explain the proper uses and features of the application.

33

8. Conclusion
8.1. Summary of Progress

The main focus of our project was to redesign the existing administrative portal and
clean up its code base. The following are the primary results of our project are as follows:

● Cleaned Codebase - A significant amount of existing code was removed from the
codebase. The removed code was often either large blocks of commented out code or
functions that were no longer used by the portal. The remaining code in the Master
branch is utilized and tested.

● Feature Conversion - Every feature that was present in the old administration portal
has been converted to the box-based design and added to the new portal. These
features include the machine status, error table, file upload, user management, and
information graphs. Each feature has also been tested to confirm that any existing
functionality was not lost in the transition.

● Integration and Unit Testing - Throughout development, we ran manual integration
tests with the production database and created unit tests for each box to ensure that
the components are functioning as expected.

● Acceptance Testing - We conducted acceptance testing with the clients throughout
the semester by utilizing weekly meetings where we were able to gather feedback on
the implementation of our designs. The end product was also thoroughly tested by the
client to ensure usability.

8.2. Value Provided
● Cleaner UI - The end goal for our clients is to sell this product to a future organization.

By cleaning up the UI with consistent and easy-to-use interfaces, we significantly
increased the product's marketability.

● Reduced Tech Debt - We also drastically reduced the amount of tech debt within the
product by upgrading the project from Angular 16 to Angular 18 to ensure that the
portal utilizes currently supported libraries.

8.3. Next Steps
The next steps for the Administration Portal include a handoff to the teams that will

continue development and a list of recommendations for features that will improve the
functionality and marketability of the portal.

34

8.3.1. Team Handoff
The future development of the Administration Portal has been handed off to a team

from Oregon State University. We have met with their team to explain our design
implementation and provided a list of recommended features for the project.

8.3.2. Recommended Features
● Error Purging - Automatically purging errors from the database after a set time

period would clean up the UI of the Error Table box by removing old errors that have
already been investigated.

● Modular Dashboards - In the current implementation, the end users cannot change
the boxes shown on their dashboards. Adding a feature that enables users to
modify their dashboards would allow for more modularity and improve the end-user
experience.

● Persistent Accounts - The authentication for the Administrative Portal is currently
handled locally, and the user accounts do not persist across devices. Storing
hashed credentials in the database for authentication would allow user accounts to
persist across different devices and instances of the Portal.

● Website Configuration - There does not currently exist an efficient way to modify
the theme or styling on the Administrative Portal. Utilizing a configuration file or
similar tool would simplify the process of changing the theme and increase the
product's marketability.

35

9. References
[1] IEEE Standards Association “IEEE SA - IEEE/ISO/IEC P23026: Systems and

Software Engineering -- Engineering and Management of Websites for Systems,
Software, and Services Information” [Online].
Available: https://standards.ieee.org/ieee/23026/10425/ [Accessed Apr. 16, 2024]

[2] Angular “Angular coding style guide” [Online]. Available:
https://angular.io/guide/styleguide [Accessed Apr. 16, 2024]

[3] Google “Google TypeScript Style Guide,” [Online].
Available: https://google.github.io/styleguide/tsguide.html [Accessed Apr. 16, 2024]

https://standards.ieee.org/ieee/23026/10425/
https://angular.io/guide/styleguide
https://google.github.io/styleguide/tsguide.html

36

Appendices
Appendix A - Operational Manual
DEVELOPMENT ENVIRONMENT SET UP

1. Cloning the Repository and Navigating to Project Root
1.1. Using Git Bash, clone the repository and navigate to the project root

directory (./Admin).
1.2. Verify the directory using (pwd).

git clone <repository-url>

cd ./Admin

pwd

2. Install Backend Dependencies
2.1. Navigate to the backend directory (backend).
2.2. Install the necessary dependencies using (npm install).
2.3. Return to the project root.

cd backend && npm install && cd -

3. Install Frontend (Angular) Dependencies
3.1. Navigate to the frontend directory (admin-ang).
3.2. Install the necessary dependencies using (npm install).
3.3. Return to the project root.

cd admin-ang && npm install && cd -

4. Running the Environment
4.1. To prepare to run the environment, open up two terminals—one for the front

and backend.
5. Starting the Frontend

5.1. On the first terminal, navigate to the frontend directory (admin-ang).
5.2. To run it on the localhost use (ng serve)
5.3. This will start an instance of the frontend at http://localhost:4000

cd admin-ang

ng serve

http://localhost:4000

37

6. Credential Creation
6.1. On the second terminal, navigate to the backend (backend).
6.2. Run the following command (node createAuthConfig.js).
6.3. Then, you will be prompted to enter an email and password. These

credentials are saved in ‘.config.js’ and will be the credentials to log into the
site.

cd backend

node createAuthConfig.js

<enter email & password>

7. Starting the Backend
7.1. You can select one of the following to .js to run on the second terminal.

7.1.1. ‘indexDev.js’: this file uses mock data.
7.1.2. ‘index.js’: this file will attempt to use the real database.

7.2. The selected file will start the instance of the backend at
http://localhost:8080

7.3. Run the following command to execute the file.

node src/index<Dev>.js

http://localhost:8080

38

Appendix B - Code

EXAMPLE OF ANGULAR SERVICE (MACHINE STATUS SERVICE)

@Injectable({
providedIn: 'root'
})
export class MachineStatusService {
private machineStatusSubject = new BehaviorSubject<MachineStatus[]>([]);
public machineStatus$: Observable<MachineStatus[]> =
this.machineStatusSubject.asObservable();

constructor(private httpService : HttpClient) {this.fetchMachineStatus()}

fetchMachineStatus() {
try {
this.httpService.get<Array<Object>>(environment.serverUrl +

"/GetMachineCheckInStatus").toPromise().then(checkInStatus => {
let convertedMachineStatus: MachineStatus[] = []
checkInStatus.forEach((machine) => {
convertedMachineStatus.push({
host_name: machine['Host_name'] as string,
status: machine['Status'] === "1" ? StatusType.Active :

StatusType.Pending
});

});

for(let i = 0; i < convertedMachineStatus.length; i++) {

this.pingMachine(convertedMachineStatus[i].host_name).then(machineOnline => {
convertedMachineStatus[i].status =
StatusType.Pending === convertedMachineStatus[i].status &&

machineOnline ? StatusType.Reachable : StatusType.Error
})

}

this.machineStatusSubject.next(convertedMachineStatus);
})

} catch (error) {
console.error('Error fetching dashboard procedures:', error);

}
}

}

39

EXAMPLE OF BOX HTML (MACHINE STATUS BOX)
<div class="box" [ngStyle]="{
'width': width,
'height': height,
'background-color': backgroundColor,
'border-radius': borderRadius
}">
<h3 class="title">Machine Status</h3>
<div class="table-container">
<table id="machineTable" class="status-table">
<thead class="status-table-header">
<tr>
<th>
Host Name

</th>
<th>
Status

</th>
</tr>

</thead>

<tbody>
<ng-container *ngFor="let machineStatus of statuses; let i = index">
<tr (click)="setExpandedRow(i)" style="border-top: 1px solid #DBDFFE;">
<td>
{{machineStatus.host_name}}

</td>
<td>
<div class="status-circle"

[ngClass]="getStatusClass(machineStatus.status)"></div>
</td>

</tr>

<tr class="expanded-row">
<td colspan="5" >
<div class="expandable-content" [ngClass]="{'expanded': expandedRow

=== i}">
<p style="padding: 10px">{{ getStatusMessage(machineStatus) }}</p>

</div>
</td>

</tr>
</ng-container>

</tbody>
</table>
</div>
</div>

40

EXAMPLE OF BOX TYPESCRIPT (MACHINE STATUS BOX)
@Component({
standalone: true,
selector: 'app-machine-status-box',
templateUrl: './machine-status-box.component.html',
styleUrls: ['./machine-status-box.component.css'],
imports: [CommonModule]
})
export class MachineStatusBoxComponent extends BoxBaseComponent implements
OnInit {
constructor(private machineStatusService : MachineStatusService) { super() }
statuses: MachineStatus[] = []
expandedRow = null;
ngOnInit(): void {
this.machineStatusService.machineStatus$.subscribe(value => {
this.statuses = value;

});
this.machineStatusService.fetchMachineStatus()

}

setExpandedRow(index: number): void {
this.expandedRow = this.expandedRow === index ? null : index;

}

getStatusClass(status: StatusType): string {
switch (status) {
case StatusType.Active:
return 'green';

case StatusType.Reachable:
case StatusType.Pending:
return 'yellow'

default:
return 'red';

}
}
getStatusMessage(status: MachineStatus): string
{
switch (status.status) {
case StatusType.Active:
return status.host_name + " has recently reported a check in!";

case StatusType.Reachable:
case StatusType.Pending:
return status.host_name + " was able to be pinged; however, it has

not checked in!"
default:
return status.host_name + " has not checked in nor is it able to be

pinged. Resolve immediately!";
}

}

41

EXAMPLE OF BOX UNIT TEST (MACHINE STATUS BOX)
it('should call fetchMachineStatus on initialization', () => {
spyOn(mockService, 'fetchMachineStatus');
component.ngOnInit();
expect(mockService.fetchMachineStatus).toHaveBeenCalled();
});

it('should toggle expandedRow when setExpandedRow is called', () => {
component.setExpandedRow(1);
expect(component.expandedRow).toBe(1);

component.setExpandedRow(1); // Toggle off
expect(component.expandedRow).toBeNull();
});

it('should return the correct class for each status', () => {
expect(component.getStatusClass(StatusType.Active)).toBe('green');
expect(component.getStatusClass(StatusType.Reachable)).toBe('yellow');
expect(component.getStatusClass(StatusType.Pending)).toBe('yellow');
expect(component.getStatusClass(StatusType.Error)).toBe('red');
});

it('should return the correct status message', () => {
const activeStatus: MachineStatus = { host_name: 'Machine 1', status:
StatusType.Active };
const reachableStatus: MachineStatus = { host_name: 'Machine 2', status:
StatusType.Reachable };
const unreachableStatus: MachineStatus = { host_name: 'Machine 3', status:
StatusType.Error };

expect(component.getStatusMessage(activeStatus)).toContain('has recently
reported a check in!');
expect(component.getStatusMessage(reachableStatus)).toContain('was able to be
pinged');
expect(component.getStatusMessage(unreachableStatus)).toContain('has not
checked in');
});

it('should render the table with statuses', () => {
const rows = fixture.debugElement.queryAll(By.css('tbody
tr:not(.expanded-row)'));
expect(rows.length).toBe(3); // One row per machine status

const firstRowCells = rows[0].queryAll(By.css('td'));
expect(firstRowCells[0].nativeElement.textContent.trim()).toBe('Machine 1');
});

42

EXAMPLE OF ROUTER (MACHINE CHECK-IN ROUTE)
router.get("/GetMachineCheckInStatus", (req, res, next) => {

var connection = db.getPool();
connection.query(

("CALL dc." + "Fetch_TVMonitorStatus"),
[req.body.Host_Name], //SELECT * FROM dc.Errors ORDER BY Date_Time DESC

LIMIT 30
(error, results) => {

if (error) {
console.error(error);
res.status(500).json({ status: 'error' });

} else {
res.status(200).json(results[0]);

}
}

)
})

EXAMPLE OF ROUTER UNIT TEST (MACHINE CHECK-IN ROUTE)
it('should return 200 and the results on success', async () => {

const mockResults = [{ status: 'ok' }];
__mockQuery.mockImplementation((query, params, callback) => {

callback(null, [mockResults]); // Pass null for error, and mock results
for data

});

console.log("Waiting...")
const response = await request(app)

.get('/GetMachineCheckInStatus')

.send({ Host_Name: 'test-host' });
expect(response.status).toBe(200);
expect(response.body).toEqual(mockResults);
expect(__mockQuery).toHaveBeenCalledWith(

'CALL dc.Fetch_TVMonitorStatus',
['test-host'],
expect.any(Function)

);
});

43

Appendix C - Gantt Chart

44

Appendix D - Team
1. TEAM MEMBERS

Derek Brandt, Tyler Orman, Aryan Rao, Israel Sanchez-Tellez, Danh Hoang

2. REQUIRED SKILLS FOR PROJECT

The frontend interface of the Administration Portal is written using Angular and Typescript.
The backend uses the technologies Express and MySql to perform tasks.
The overall goal of DigiClips is to be able to host this project on AWS Lightsail.

3. SKILL SETS COVERED BY TEAM
For the front end, Aryan has experience using the Angular framework.
Also, Israel has used Typescript in a previous Co-op for the front end.
The whole team has experience with MySql.
Aryan, Derek, and Tyler have brief experience with Express.
The part where the whole team lacks experience is with AWS Lightsail.

4. PROJECT MANAGEMENT STYLE ADOPTED BY TEAM
Overall, we use a hybrid approach to project management. For design, we chose the
Waterfall style. This is because the project requirements must be understood before any
development or design can be completed. For the implementation phase, we will switch to
an agile style where the changes will be made into user stories that can be broken down
into manageable tasks.

5. INITIAL PROJECT MANAGEMENT ROLES

Derek Brandt - Architecture Lead TODO Need to elaborate on roles
Tyler Orman - Security Lead
Aryan Rao - Programming Lead
Israel Sanchez Tellez - Client Interaction Lead

45

6. TEAM CONTRACT

Team Members:
1) Tyler Orman 2) Derek Brandt
3) Israel Sanchez-Tellez 4) Aryan Rao
5) Danh Hoang

Team Procedures
1. Meeting Time and Location: Weekly Tuesday at 5 pm, Virtual.

2. Team Communication:
Discord will be the primary communication means via chat or voice call. Deadlines

and scheduling will be done in the respective Discord channel.

3. Decision-Making Policy:
The primary decision-making policy will fall to a decision matrix. These types of

decisions will be brought up during the weekly team meeting. Before the meeting, the
individual is responsible for creating the categories of the decision matrix. The team will fill
out the decision matrix to reach a group consensus. A majority rule can override, change,
or remove any category in the decision matrix during the group meeting. Due to the length
of the process, this method should be reserved for software architecture changes, team
structure changes, and software structure changes.

Decisions on software implementation can be brought up during team meetings;
however, they should be reserved for code reviews. Between two code reviewers and the
submitter, a consensus on implementation should be reached by the majority rule. It
should be escalated to a team meeting decision matrix if it cannot.

If any team member has a decision that does not fall under any previous category, it
should be brought up to the team during team meetings. If the decision requires a decision
matrix due to complexity, the person responsible must submit categories for analysis.

4. Record-Keeping Procedure:
At the beginning of each meeting, a group member will be chosen to write meeting

notes. These meeting notes will be sent to the respective Discord channel at the end of
each meeting. The responsibility of the recording will fall under a round-robin schedule, in
the following order: Derek, Israel, Tyler, and Aryan. The schedule will move to the next
person if a member misses a week. The person who missed will be required to record
keep following week.

46

Participation Expectations
1. Meeting Expectations:

Each team member must attend all weekly meetings with the team and the client.
During this, future deadlines will be discussed and agreed upon. If a member has hit a
roadblock in, it is expected that they bring it up during the weekly team meeting. If a
member has to miss a meeting for any reason, they likely inform the team; however, they
only need to include why if repeatedly missing meetings.

2. Assignment Expectations:
Team members are expected to complete their assigned weekly tasks by the next

meeting. If a team member is unable to complete their weekly task, the rest of the team
should be promptly notified so that plans can be made to complete the task.

3. Response Expectations:
It is expected that each team member responds within 24 hours of a given

message. Also, to ensure that communications are seen, it is expected that each member
performs a daily Discord check.

4. Weekly Hours Expectations:
There is no maximum or minimum amount of time for each member to put into the

project. However, it is expected that a team member finishes their weekly assigned tasks.
If the weekly assigned tasks exceed 12 hours of total work, the member will not required
to finish them. During the next team meeting, they should mention this excessive work so
future weekly loads can be reduced.

47

Leadership
1. Team Roles:

● Derek - Project Manager / Architectural Lead - Organizing documentation, team
meetings, and knowledge about overall project structure and organization.

● Israel - Client Interaction Lead - In charge of client and inter-team communication.
● Aryan - Programming Lead - Responsible for being knowledgeable in Angular and

Typscript.
● Tyler - Security Lead - Identify security vulnerabilities and program.
● Danh - Programmer - Implement user stories and tests.

2. Support and Guiding Strategies:
The primary method to guide team members will be the weekly to-do list. This list

will contain all tasks that need to be done and those that will be completed during the
week. Researching technology is a valid to-do item. This will encourage team members to
explore new technologies and obtain more efficient and elegant results before
implementing solutions.

Each team member is expected to be adaptable and flexible. This means that team
members are expected to help each other when hitting roadblocks, even if it means
sacrificing meeting deadlines considered a lower priority. Team members are encouraged
to participate in an open dialog during team meetings and throughout the week about
roadblocks. Finally, all code will be subject to code reviews to allow members to learn
about others' work and provide input.

3. Recognizing Contributions:
Each team member will report their accomplished tasks during the weekly meeting.

This will be noted in the to-do as a visual representation of the work completed. Secondly,
accomplishments will expected to be notarized in each progress report submitted.

48

Collaboration and Inclusion
1. Team Skills and Expertise:

● I (Israel) completed a Software Developer Co-op last year, where I worked on
frontend code and the installer for the application. The frontend code consisted of
Javascript and React components. I used the React Testing Library to test the
frontend code. For the installer, I injected a dependency check using Wix#
(WixSharp) for certain .NET Runtimes needed to run the application. This semester,
I’m also doing a part-time co-op with the same company to continue gaining
real-world experience.

● I (Derek) am a Software Engineer. I have experience writing embedded software in
C++ and using Gmock, a testing framework that I have developed working at John
Deere. This is my current job as a part-time student there. I have experience using
Python machine-learning libraries such as Pytorch and Tensorflow in conjunction
with GymAPI. I have experience programming games and game AI in Unity using
C#. Finally, I have experience with backend and frontend development for web
apps and Android apps that I have obtained through Iowa State courses.

● I (Tyler Orman) am a Cybersecurity Engineer. I have experience with networking as
well as various programming languages, including C, Python, Java, and a bit of
Javascript, HTML, and PHP. Through courses here at Iowa State, I have gained
experience with Backend development and have also built various applications for
different jobs. I currently work part-time for Iowa State as an intern with Hunter
Strategy.

● I (Aryan) bring some hands-on experience in software development to the team.
With a strong background in coding and problem-solving, I have honed my skills
through various internships and work experience. This experience not only provided
exposure to diverse technological landscapes but also fostered adaptability and a
keen understanding of industry best practices. We, as a team, will be ensuring that
we stay at the forefront of cutting-edge software development.

● I (Danh) am a Software Engineer I have experience from my internship with frontend
site development and testing. I also have backend experience with some courses
that I have taken at Iowa State. Some of the programming languages I know are
Java, C, C++, Java Script and HTML. I also have experience with cloud somputing
and experience with using databases like MySQL.

49

2. Team Encouragement and Support Strategies:
The primary strategy the team will use for encouraging and supporting contributions and
ideas will be to have open communications. This means that as a team, we will hold
meetings where any idea or perspective is valuable and will be heard by all. The team has
a Discord server where chats and virtual meetings will occur.

Since DigiClips uses its own GitHub repository, the team will conduct code reviews. By
doing code reviews, not only will the team ensure that minimal amounts of bugs reach
production, but it will also allow team members to provide feedback to other team
members.

Another strategy that will not be enforced but is highly encouraged is for team members to
conduct pair programming sessions. These sessions include two or more team members
working on the same task simultaneously. Pair-programming sessions create the
opportunity for knowledge sharing and ensure everyone is actively involved.

3. Collaboration and inclusion Strategies:
All team concerns will be addressed with respect. These concerns should be raised during
weekly meetings or mentioned in the Discord. We will implement an Open-door Policy to
encourage each team member to vocalize concerns immediately. To ensure team
members are collaborating, the team will use the weekly to-do list as primary evidence of
the contributions of each team member. Any concerns regarding under or
over-contributing should be addressed during the weekly team members.

Goal-Setting, Planning, and Execution
1. Team Goals:
The most fundamental goal of the team is to complete the course. However, the primary
goal is to work with the given team to create a successful deliverable for Digiclips. Other
objects include gaining experience handling functional and non-functional requirements,
working with a client to create a deliverable and experience learning unknown technologies
in short periods.

2. Assigning Team and Individual Work:
During each weekly team meeting, the team will assess what the client's needs are for the
upcoming and which tasks to prioritize. All tasks will be recorded in the to-do list. At the
end of each weekly meeting, tasks will be divided up amongst team members and will be
recorded as in progress until otherwise completed.

50

3. Keeping on Task:
During weekly meetings, we will utilize a chime when the team gets off task. If a team
member is absent at a meeting, it is their responsibility to read the meeting notes and
check the to-do list to see what needs to be done. Since tasks will be assigned
individually, it will be the individual's responsibility to keep themselves on task during work
hours and adhere to prior expectations on week completion.

Consequences for Not Adhering to Team Contract
1. How will you handle infractions of any of the obligations of this team contract?
Infractions of the contract will be addressed directly with the person responsible. If the
person has a reason for a breach of contract, I.e., family or personal issues, then the
breach of contract will be understood. However, a nonvalid breach of contract will be
addressed during the team's weekly meetings.

2. What will your team do if the infractions continue?
If the infractions continue, the infractions will be escalated to the TA, then our academic
advisor, and finally the professors of the class.

Team Member Signatures

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.

Signatures Date Signed

1) Tyler Orman 01/30/2024

2) Derek Brandt 01/30/2024

3) Israel Sanchez-Tellez 01/29/2024

51

4) Aryan Rao 01/29/2024

5) Danh Hoang 09/20/2024

